How to Create the System Thinking Diagrams

Complex systems can’t be seen as individual parts. We need a broader perspective to see the whole pattern that causes the problem as many factors as affecting both the current state and the desired state of the system. The system thinking theory was first introduced by Jay Forrester and members of the Society for Organizational Learning at MIT in his book, The Fifth Discipline, to help us see a complex system as a framework with interrelationships between different internal and external elements that affect the system.

Think about reducing the price of a specific product to increase the sales. This will negatively affect the quality of the product and increase the external competitiveness. Therefore, the system thinking diagram provides us a visual aid to understand the connection between different factors in the system.

Related articles:

Characteristics of the Systems Thinking

Before building the systems diagrams, we first need to understand the general principles that control the complex systems known as The 11 Laws of the Fifth Discipline (Check What Does the Systems Thinking Teach us About the Problems of Problem-Solving Practice). These principles were highlighted in the Fifth Discipline theory by Peter Senge in his book, The Fifth Discipline: The Art and Practice of the Learning Organization. These principles are below:
1- Today’s problems come from yesterday’s solutions. So, before adopting any new solutions, it is very important to understand the history of the existing problem.
2- The harder you push, the harder the system pushes back in a phenomenon known as “compensative feedback”
3- Behavior grows better before it grows worse
4- The easy way out usually leads back in therefore the best solution is to understand the problem from a systematic approach to eliminate it.
5- The cure can be worse than the disease
6- Faster is slower. For example, If the solution aims to increase the system productivity beyond its optimal rate, the system may actually slow down to compensate for this change in growth rate.
7- Cause and effect are not closely related in time and space


Ishikawa Diagram
Cause effect diagram step 3

8- Small changes can produce big results—but the areas of highest leverage are often the least obvious
9- You can have your cake and eat it too — but not all at once. The systems thinking method teaches us that we need to look at the big picture. We can provide a complete solution that accomplishes all of the required goals if we consider achieving these solutions based on a determined timeline.
10- Dividing an elephant in half does not produce two small elephants. The problems need to be seen as a whole rather than individual parts.
11- There is no blame. One of the common difficulties when solving problems is to point a finger at someone as the sole guilty person, however, in system thinking, everyone is part of a whole system

Structure of the Systems Thinking Diagrams

In order to build the systems thinking diagram, we need to clearly identify the elements of the system and how it interacts with each other. Building the systems diagrams requires four steps; identify the events, identify the pattern of, behavior, build the system, and determine the mental models.

design thinking process
The flow of creating systems thinking diagram

Step 1: Event

The first step is to identify the problem in hand that we would like to learn about. This may include one or more related problems to be addressed. For example:

  • Customers wait for a long time at the reception
  • Unsatisfied customer at the hospital reception

Step 2: Patterns of Behaviors

The next step is to observe the patterns that show the relationship between different elements involved in the system. These elements represent the potential causes of the problem (effect). The Cause Effect Diagram can help identifying the different causes that may involve the problem highlighted in the previous step.

Charts like below can show the positive and negative relation between different factors and how they contribute to the main problem need to be analyzed in the system.

Step 3: System

After identifying the potential causes for the final effect. The relation between each two elements in the system is controlled by the feedback loops. The loops are either show positive or negative relations as shown in the figure below. Sometimes, the relation is referred to Same/Opposite instead of Positive(+)/Negative(-).

system thinking loops
Two simple same and opposite relationships.

Based on the above relation, there are two types of the loops that are classified based on how they change the system:

Balanced feedback loops

This loop is the natural loop that elements tend to naturalize the impact of the change. For example, talking to each patient in the hospital reception office increases the waiting time, which positively increases the patient unsatisfactory. In this example, the feedback “patient unsatisfactory” decreasing the impact of the change “talking to the patients.”


feedback loop
Simple balanced feedback loop

Reinforcing Feedback Loops

In contrast to the balanced loop, in the reinforcing loop, the feedback increases the impact of the change. Both are moving in the same positive direction. In out example, reducing the time at the reception office reduces the waiting time, and subsequently, reduce the patient unsatisfactory.

feedback loops
Simple Reinforcing Feedback Loops

Once we build the relation between different factors, we can add external factors that affect the system such as the parking lots available for the patients or the medicine and governmental support…etc.

Identifying Gaps and Delays

In some cases, the current state of one of the elements stands as a barrier to achieve the intended goal or contribute increasing the problem. These states are known as gaps. For example, the limited number of reception personals halts any initiative to reach a higher patient satisfaction. This factor is set as a gap in the system.

System thinking
The system thinking diagram with external factors, gaps, and delays

Once the gaps are defined, we can clearly see if our initiative may work out or we need to fix these gaps before moving further with solve the problems in the system.

As highlighted Fifth Element Theory, the cause and effect may be separated in time and place. Therefore, it is crucial to understand the time delay in the feedback loops. For example training reception employees to handle patients problems more efficiently may take a time to see its impact on the system. These delays are represented in the systems by double slashes on the loop.


Further details can be added to the systems diagram such as adding numerical data that show exactly how each element is effected with the other elements in the system.

Step 4: Mental Models

At the end of the process, the model guides us though the next steps required to achieve the intended goal. For example, improving the customer experience on the hospital front desk may involve the following:

  • Increase the parking lots in front of the hospital
  • Train the personals to handle large number of customers
  • Wait for the government to provide better medicine prices…etc.

The systems thinking diagrams allows us to effectively apply the theory to understand the different elements in the complex systems by visualizing the relation between them and determine the form of this relation. Once the systems diagram is complete, we’ll have a better understanding how it works, its gaps, the delays in the system, and how to improve the system based on the concluded data.

Rafiq Elmansy

Rafiq Elmansy is the founder of, author, and design and innovation consultant. He is an affiliated faculty teaching design at the American University in Cairo. He holds a master degree in Design Management with Distinction from Staffordshire University, UK. He has more than 17 years experience in the field of UXD and interaction design, and his books are published by John Wiley, O’Reilly Media and Taylor and Francis. He is also a contributor at the Design Management Review. Rafiq is a jury board member for the A'Design Awards, Poster for Tomorrow, and Adobe Achievements Awards. His design artwork was exhibited in many locations including Croatia, South Africa, Brazil, and Spain.